Elektrische Leistung – einfach erklärt
Mit Sicherheit ist dir schon einmal der Begriff elektrische Leistung begegnet – zum Beispiel in Verbindung mit Lampen oder Haushaltsgeräten und deren Energieverbrauch. Im Folgenden wird dir erklärt, wie genau die elektrische Leistung in der Physik definiert ist.
Elektrische Leistung – Definition
Die elektrische Leistung mit Formelzeichen $P$ gibt an, wie viel elektrische Energie innerhalb eines definierten Zeitraums umgesetzt wird. Dabei wird diese Energie über einen Verbraucher, oder besser Energiewandler, in andere Energieformen umgewandelt.
Handelt es sich bei dem Verbraucher zum Beispiel um eine Glühlampe, dann wird die umgesetzte Energie in Licht- und Wärmeenergie überführt. Die Einheit der elektrischen Leistung ist das Watt:
$[P] =1~\text{W}$
Elektrische Leistung berechnen
Die allgemeine Formel für die elektrische Leistung $P$ gibt die umgesetzte Energie $\Delta E$ in einem Intervall $\Delta t$ an:
$P=\frac{\Delta E}{\Delta t}$
Dabei wird die elektrische Energie in der Einheit Joule $[E]=1~\text{J}$ und die Zeit in Sekunden $[t] =1~ \text{s}$ angegeben. Ein Watt kann daher auch als $1~\text{W}=1~\frac{\text{J}}{\text{s}}$ ausgedrückt werden.
Außerdem zeigt die Formel:
Ein Verbraucher mit einer höheren Leistung verbraucht mehr Energie als ein Verbraucher mit niedrigerer Leistung im gleichen Zeitraum, d. h. er wandelt mehr elektrische Energie in eine andere Energieform um.
Um Energie zu sparen, werden daher Verbraucher mit möglichst niedrigen Leistungen eingesetzt, zum Beispiel Energiesparlampen anstelle von Glühlampen. Das funktioniert vor allem dann gut, wenn diese einen höheren Anteil der elektrischen Energie in die gewünschte Energieform (also Lichtenergie bei der Energiesparlampe) umwandeln. Sie haben dann einen höheren Wirkungsgrad.
Außerdem gilt natürlich, dass ein Verbraucher in einem längeren Zeitraum mehr Energie umsetzt als in einem kurzen Intervall.
Elektrische Leistung bei Gleichstrom
Für Gleichstrom kann die elektrische Leistung über die Formel
$P=U\cdot I$
mithilfe der elektrischen Spannung $U$ und Stromstärke $I$ berechnet werden.
Verhält sich der Verbraucher wie ein ohmscher Widerstand $R$, kann außerdem das ohmsche Gesetz, also $U=R \cdot I$ bzw. $I=\dfrac{~U}{R}$, angewendet werden.
Daraus ergeben sich folgende Zusammenhänge:
$P=R\cdot I^{2}$
$P=\dfrac{~~~U^{2}}{R}$
Nun kennst du viele Formeln, mit denen du die elektrische Leistung berechnen kannst. Wenn du die zur Berechnung notwendigen Größen kennst, brauchst du also die elektrische Leistung nicht messen.
Elektrische Leistung – Beispielrechnungen
Für die folgenden drei Beispielrechnungen betrachten wir zwei Lampen – eine herkömmliche Glühlampe und eine Energiesparlampe. Die Glühlampe hat eine Leistung von $P_1=60~\text{W}$. Die Energiesparlampe hat eine deutlich niedrigere Leistung von $P_2=11~\text{W}$.
Rechnung 1 – Zeitvergleich
Wie lange muss die Energiesparlampe betrieben werden, um die gleiche Energie umzusetzen wie die Glühlampe in einer Stunde?
Um das zu berechnen, ermitteln wir erst einmal die Energie $\Delta E_1$, die die Glühlampe in einer Stunde umsetzt. Das kann man über den Zusammenhang für die elektrische Leistung
$P_1=\frac{\Delta E_1}{\Delta t_1} \Leftrightarrow \Delta E_1=P_1 \cdot \Delta t_1=\pu{60 W} \cdot \pu{1 h} = \pu{60 \frac{J}{s}} \cdot 3\,600~\pu{s}=216\,000~\pu{J}$
Die Glühlampe setzt in einer Stunde also eine Energie von $216\,000~\text{J}$ um. Nun können wir den gleichen Zusammenhang verwenden, um die Zeit $\Delta t_2$ auszurechnen, in der die Energiesparlampe mit Leistung $P_2$ die gleiche Energie umgesetzt hat. Die Formel $P=\frac{\Delta E}{\Delta t}$ muss also nach $\Delta t$ umgestellt werden.
$P_2=\frac{\Delta E_2}{\Delta t_2} = \frac{\Delta E_1}{\Delta t_2} \Leftrightarrow \Delta t_2 = \frac{\Delta E_1}{P_2} = \frac{216\,000~\pu{J}}{11~\pu{W}} \approx 19\,600~\pu{s} \approx \pu{5,4 h}$
Die Energiesparlampe kann also etwa fünfmal so lange betrieben werden wie die Glühlampe, bis sie die gleiche Energie umgesetzt hat. Dass weniger Energie verbraucht wird, bedeutet allerdings nicht, dass die Sparlampe schlechter oder weniger leuchtet als die Glühlampe. Stattdessen ist sie deutlich effizienter und gibt weniger Energie in Form von Wärme oder Licht, das man nicht sehen kann (z. B. Infrarot- oder UV-Licht), ab.
Rechnung 2 – Stromstärke
Welche Stromstärke $I_2$ ist nötig, um die Energiesparlampe mit $P_2$ bei einer Spannung von $220~\text{V}$ zu betreiben?
Für diese Berechnung kann man die Formel $P=U\cdot I$ verwenden und nach $I$ umstellen. Daraus ergibt sich:
$P_2=U_2 \cdot I_2 \Leftrightarrow I_2=\frac{P_{2}}{U_2}=\frac{11~\text{W}}{220~\text{V}}= 0,05~\text{A}$.
Es ist also eine Stromstärke von $0,05~\text{A}$ nötig.
Rechnung 3 – ohmscher Widerstand
Welchen ohmschen Widerstand hat die Glühlampe mit $P_1$ bei einem Stromfluss von $2~\text{A}$?
An dieser Stelle kann der Zusammenhang $P=R\cdot I^{2}$ verwendet und zur Berechnung des Widerstands nach $R_1$ umgestellt werden:
$P_1=R_1 \cdot {I_1}^{2} \Leftrightarrow R_1 = \frac{P_1}{{I_1}^2} = \frac{60~\pu{W}}{(2~\pu{A})^{2}}=15~\Omega$
Der ohmsche Widerstand beträgt in diesem Fall also $15~\Omega$.
Zusammenfassung der elektrischen Leistung
- Die elektrische Leistung $P$ ist definiert als Quotient der Energiemenge $\Delta E$ und der Zeitspanne $\Delta t$, in der diese umgesetzt bzw. umgewandelt wird: $P=\frac{\Delta E}{\Delta t}$
- Zusammen mit der Formel des ohmschen Gesetzes $\left( U = R \cdot I \right)$ lassen sich die elektrischen Leistungen vieler Bauteile berechnen, die als Energiewandler dienen (beispielsweise die Leistung einer Energiesparlampe) und untereinander vergleichen.
- Eine besonders große Leistung ist nicht immer wünschenswert. Es kommt immer darauf an, ob die elektrische Energie auch wirklich in erwünschte Energieformen umgewandelt wird – also wie groß der Wirkungsgrad eines Bauteils bzw. der darüber ablaufenden Energieumwandlung ist.
Häufig gestellte Fragen zum Thema elektrische Leistung
Teste dein Wissen zum Thema Elektrische Leistung!
1.215.161 Schülerinnen und Schüler haben bereits unsere Übungen absolviert. Direktes Feedback, klare Fortschritte: Finde jetzt heraus, wo du stehst!
Noch nicht angemeldet?
Jetzt registrieren und vollen Zugriff auf alle Funktionen erhalten!
30 Tage kostenlos testen