Inhibition of Escherichia coli CTP synthase by glutamate gamma-semialdehyde and the role of the allosteric effector GTP in glutamine hydrolysis (2025)

. 2001 May 15;356(Pt 1):223–232. doi: 10.1042/0264-6021:3560223

S L Bearne

1, O Hekmat

1, J E Macdonnell

1

PMCID: PMC1221831PMID: 11336655

Abstract

Cytidine 5'-triphosphate synthase catalyses the ATP-dependent formation of CTP from UTP with either ammonia or glutamine as the source of nitrogen. When glutamine is the substrate, GTP is required as an allosteric effector to promote catalysis. Escherichia coli CTP synthase, overexpressed as a hexahistidine-tagged form, was purified to high specific activity with the use of metal-ion-affinity chromatography. Unfused CTP synthase, generated by the enzymic removal of the hexahistidine tag, displayed an activity identical with that of the purified native enzyme and was used to study the effect of GTP on the inhibition of enzymic activity by glutamate gamma-semialdehyde. Glutamate gamma-semialdehyde is expected to inhibit CTP synthase by reacting reversibly with the active-site Cys-379 to form an analogue of a tetrahedral intermediate in glutamine hydrolysis. Indeed, glutamate gamma-semialdehyde is a potent linear mixed-type inhibitor of CTP synthase with respect to glutamine (K(is) 0.16+/-0.03 mM; K(ii) 0.4+/-0.1 mM) and a competitive inhibitor with respect to ammonia (K(i) 0.39+/-0.06 mM) in the presence of GTP at pH 8.0. The mutant enzyme (C379A), which is fully active with ammonia but has no glutamine-dependent activity, is not inhibited by glutamate gamma-semialdehyde. Although glutamate gamma-semialdehyde exists in solution primarily in its cyclic form, Delta(1)-pyrroline-5-carboxylate, the variation of inhibition with pH, and the weak inhibition by cyclic analogues of Delta(1)-pyrroline-5-carboxylate (L-proline, L-2-pyrrolidone and pyrrole-2-carboxylate) confirm that the rare open-chain aldehyde species causes the inhibition. When ammonia is employed as the substrate in the absence of GTP, the enzyme's affinity for glutamate gamma-semialdehyde is decreased approx. 10-fold, indicating that the allosteric effector, GTP, functions by stabilizing the protein conformation that binds the tetrahedral intermediate(s) formed during glutamine hydrolysis.

Full Text

The Full Text of this article is available as a PDF (247.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. M. CTP synthetase from Escherichia coli: an improved purification procedure and characterization of hysteretic and enzyme concentration effects on kinetic properties. Biochemistry. 1983 Jun 21;22(13):3285–3292. doi: 10.1021/bi00282a038. [DOI] [PubMed] [Google Scholar]
  2. Badet B., Vermoote P., Haumont P. Y., Lederer F., LeGoffic F. Glucosamine synthetase from Escherichia coli: purification, properties, and glutamine-utilizing site location. Biochemistry. 1987 Apr 7;26(7):1940–1948. doi: 10.1021/bi00381a023. [DOI] [PubMed] [Google Scholar]
  3. Bearne S. L., Wolfenden R. Glutamate gamma-semialdehyde as a natural transition state analogue inhibitor of Escherichia coli glucosamine-6-phosphate synthase. Biochemistry. 1995 Sep 12;34(36):11515–11520. doi: 10.1021/bi00036a026. [DOI] [PubMed] [Google Scholar]
  4. Chung C. T., Niemela S. L., Miller R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2172–2175. doi: 10.1073/pnas.86.7.2172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dufour E., Storer A. C., Ménard R. Peptide aldehydes and nitriles as transition state analog inhibitors of cysteine proteases. Biochemistry. 1995 Jul 18;34(28):9136–9143. doi: 10.1021/bi00028a024. [DOI] [PubMed] [Google Scholar]
  6. Huang X., Raushel F. M. An engineered blockage within the ammonia tunnel of carbamoyl phosphate synthetase prevents the use of glutamine as a substrate but not ammonia. Biochemistry. 2000 Mar 28;39(12):3240–3247. doi: 10.1021/bi9926173. [DOI] [PubMed] [Google Scholar]
  7. Krahn J. M., Kim J. H., Burns M. R., Parry R. J., Zalkin H., Smith J. L. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry. 1997 Sep 16;36(37):11061–11068. doi: 10.1021/bi9714114. [DOI] [PubMed] [Google Scholar]
  8. Larsen T. M., Boehlein S. K., Schuster S. M., Richards N. G., Thoden J. B., Holden H. M., Rayment I. Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry. 1999 Dec 7;38(49):16146–16157. doi: 10.1021/bi9915768. [DOI] [PubMed] [Google Scholar]
  9. Levitzki A., Koshland D. E., Jr Cytidine triphosphate synthetase. Covalent intermediates and mechanisms of action. Biochemistry. 1971 Aug 31;10(18):3365–3371. doi: 10.1021/bi00794a008. [DOI] [PubMed] [Google Scholar]
  10. Levitzki A., Koshland D. E., Jr Ligand-induced dimer-to-tetramer transformation in cytosine triphosphate synthetase. Biochemistry. 1972 Jan 18;11(2):247–253. doi: 10.1021/bi00752a016. [DOI] [PubMed] [Google Scholar]
  11. Levitzki A., Koshland D. E., Jr Negative cooperativity in regulatory enzymes. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1121–1128. doi: 10.1073/pnas.62.4.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levitzki A., Koshland D. E., Jr Role of an allosteric effector. Guanosine triphosphate activation in cytosine triphosphate synthetase. Biochemistry. 1972 Jan 18;11(2):241–246. doi: 10.1021/bi00752a015. [DOI] [PubMed] [Google Scholar]
  13. Levitzki A., Stallcup W. B., Koshland D. E., Jr Half-of-the-sites reactivity and the conformational states of cytidine triphosphate synthetase. Biochemistry. 1971 Aug 31;10(18):3371–3378. doi: 10.1021/bi00794a009. [DOI] [PubMed] [Google Scholar]
  14. Lewis D. A., Villafranca J. J. Investigation of the mechanism of CTP synthetase using rapid quench and isotope partitioning methods. Biochemistry. 1989 Oct 17;28(21):8454–8459. doi: 10.1021/bi00447a027. [DOI] [PubMed] [Google Scholar]
  15. Lienhard G. E., Jencks W. P. Thiol addition to the carbonyl group. Equilibria and kinetics. J Am Chem Soc. 1966 Sep 5;88(17):3982–3994. doi: 10.1021/ja00969a017. [DOI] [PubMed] [Google Scholar]
  16. Lim R. L., O'Sullivan W. J., Stewart T. S. Isolation, characterization and expression of the gene encoding cytidine triphosphate synthetase from Giardia intestinalis. Mol Biochem Parasitol. 1996 Jun;78(1-2):249–257. doi: 10.1016/s0166-6851(96)02635-7. [DOI] [PubMed] [Google Scholar]
  17. Long C. W., Levitzki A., Koshland D. E., Jr The subunit structure and subunit interactions of cytidine triphosphate synthetase. J Biol Chem. 1970 Jan 10;245(1):80–87. [PubMed] [Google Scholar]
  18. Long C. W., Pardee A. B. Cytidine triphosphate synthetase of Escherichia coli B. I. Purification and kinetics. J Biol Chem. 1967 Oct 25;242(20):4715–4721. [PubMed] [Google Scholar]
  19. Lowe G., Yuthavong Y. Kinetic specificity in papain-catalysed hydrolyses. Biochem J. 1971 Aug;124(1):107–115. doi: 10.1042/bj1240107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lowe G., Yuthavong Y. pH-dependence and structure-activity relationships in the papain-catalysed hydrolysis of anilides. Biochem J. 1971 Aug;124(1):117–122. doi: 10.1042/bj1240117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Massière F., Badet-Denisot M. A. The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci. 1998 Mar;54(3):205–222. doi: 10.1007/s000180050145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mezl V. A., Knox W. E. Properties and analysis of a stable derivative of pyrroline-5-carboxylic acid for use in metabolic studies. Anal Biochem. 1976 Aug;74(2):430–440. doi: 10.1016/0003-2697(76)90223-2. [DOI] [PubMed] [Google Scholar]
  23. Muchmore C. R., Krahn J. M., Kim J. H., Zalkin H., Smith J. L. Crystal structure of glutamine phosphoribosylpyrophosphate amidotransferase from Escherichia coli. Protein Sci. 1998 Jan;7(1):39–51. doi: 10.1002/pro.5560070104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Leary M. H., Urberg M., Young A. P. Nitrogen isotope effects on the papain-catalyzed hydrolysis of N-benzoyl-L-argininamide. Biochemistry. 1974 May 7;13(10):2077–2081. doi: 10.1021/bi00707a012. [DOI] [PubMed] [Google Scholar]
  25. Ostrander D. B., O'Brien D. J., Gorman J. A., Carman G. M. Effect of CTP synthetase regulation by CTP on phospholipid synthesis in Saccharomyces cerevisiae. J Biol Chem. 1998 Jul 24;273(30):18992–19001. doi: 10.1074/jbc.273.30.18992. [DOI] [PubMed] [Google Scholar]
  26. Park T. S., Ostrander D. B., Pappas A., Carman G. M. Identification of Ser424 as the protein kinase A phosphorylation site in CTP synthetase from Saccharomyces cerevisiae. Biochemistry. 1999 Jul 6;38(27):8839–8848. doi: 10.1021/bi990784x. [DOI] [PubMed] [Google Scholar]
  27. Tesmer J. J., Klem T. J., Deras M. L., Davisson V. J., Smith J. L. The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families. Nat Struct Biol. 1996 Jan;3(1):74–86. doi: 10.1038/nsb0196-74. [DOI] [PubMed] [Google Scholar]
  28. Thoden J. B., Huang X., Raushel F. M., Holden H. M. The small subunit of carbamoyl phosphate synthetase: snapshots along the reaction pathway. Biochemistry. 1999 Dec 7;38(49):16158–16166. doi: 10.1021/bi991741j. [DOI] [PubMed] [Google Scholar]
  29. Thompson R. C. Peptide aldehydes: potent inhibitors of serine and cysteine proteases. Methods Enzymol. 1977;46:220–225. doi: 10.1016/s0076-6879(77)46023-3. [DOI] [PubMed] [Google Scholar]
  30. Traut T. W. Enzymes of nucleotide metabolism: the significance of subunit size and polymer size for biological function and regulatory properties. CRC Crit Rev Biochem. 1988;23(2):121–169. doi: 10.3109/10409238809088318. [DOI] [PubMed] [Google Scholar]
  31. Weng M. L., Zalkin H. Structural role for a conserved region in the CTP synthetase glutamine amide transfer domain. J Bacteriol. 1987 Jul;169(7):3023–3028. doi: 10.1128/jb.169.7.3023-3028.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Weng M., Makaroff C. A., Zalkin H. Nucleotide sequence of Escherichia coli pyrG encoding CTP synthetase. J Biol Chem. 1986 Apr 25;261(12):5568–5574. [PubMed] [Google Scholar]
  33. Williams I., Frank L. Improved chemical synthesis and enzymatic assay of delta-1-pyrroline-5-carboxylic acid. Anal Biochem. 1975 Mar;64(1):85–97. doi: 10.1016/0003-2697(75)90408-x. [DOI] [PubMed] [Google Scholar]
  34. Williams J. C., Kizaki H., Weber G., Morris H. P. Increased CTP synthetase activity in cancer cells. Nature. 1978 Jan 5;271(5640):71–73. doi: 10.1038/271071a0. [DOI] [PubMed] [Google Scholar]
  35. Zalkin H., Smith J. L. Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol. 1998;72:87–144. doi: 10.1002/9780470123188.ch4. [DOI] [PubMed] [Google Scholar]
  36. Zalkin H. The amidotransferases. Adv Enzymol Relat Areas Mol Biol. 1993;66:203–309. doi: 10.1002/9780470123126.ch5. [DOI] [PubMed] [Google Scholar]
  37. Zalkin H., Truitt C. D. Characterization of the glutamine site of Escherichia coli guanosine 5'-monophosphate synthetase. J Biol Chem. 1977 Aug 10;252(15):5431–5436. [PubMed] [Google Scholar]
  38. von der Saal W., Anderson P. M., Villafranca J. J. Mechanistic investigations of Escherichia coli cytidine-5'-triphosphate synthetase. Detection of an intermediate by positional isotope exchange experiments. J Biol Chem. 1985 Dec 5;260(28):14993–14997. [PubMed] [Google Scholar]
Inhibition of Escherichia coli CTP synthase by glutamate gamma-semialdehyde and the role of the allosteric effector GTP in glutamine hydrolysis (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Arline Emard IV

Last Updated:

Views: 5702

Rating: 4.1 / 5 (52 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Arline Emard IV

Birthday: 1996-07-10

Address: 8912 Hintz Shore, West Louie, AZ 69363-0747

Phone: +13454700762376

Job: Administration Technician

Hobby: Paintball, Horseback riding, Cycling, Running, Macrame, Playing musical instruments, Soapmaking

Introduction: My name is Arline Emard IV, I am a cheerful, gorgeous, colorful, joyous, excited, super, inquisitive person who loves writing and wants to share my knowledge and understanding with you.